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Some of the dense fluid at the front of an advancing gravity current is observed to  be 
mixed with the ambient fluid. This process continues when the cross-stream non- 
uniformities at the head of the current are suppressed by advancing the floor beneath 
the head. In  the resulting two-dimensional flow regular billows are visible. This paper 
considers experimentally and analytically the inviscid gravity current head and 
specifically includes the observed mixing at  the head. Experimental results were 
obtained with an apparatus in which the head of the gravity current was brought to 
rest by an opposing uniform flow. The mixing appears to occur through Kelvin- 
Helmholtz billows generated on the front of the head and controls the dynamics of 
the head. A momentum balance is used to analyse the flow and the problem is closed 
by quantitatively introducing the billow structure. 

1. Introduction 
The front part of a gravity current is deeper than the following steady flow and this 

raised section of the flow is referred to as the head of the gravity current (figure 1 (a), 
plate 1). When the gravity current is advancing over a rigid surface a three-dimen- 
sional unsteady flow field develops a t  the head which appears to be analytically 
intractable. The foremost part of the head consists of a complicated shifting pattern 
of lobes and clefts with an intermittent series of billows breaking away (Simpson 
1969). However, solutions have been developed by Benjamin (1968) for the dynamics 
of the two-dimensional steady head of a gravity current in inviscid fluids. When we 
observe a gravity current advancing over a horizontal floor we see two processes not 
considered in Benjamin’s inviscid analysis which we believe have some significance in 
the dynamics of the head. The first process is mixing between the two fluids a t  the 
upper interface of the head of the gravity current, the mixed fluid being left behind 
the advancing head. This requires that the velocity of advance of the head of a gravity 
current of constant depth (e.g. a one-dimensional inviscid gravity current on a 
horizontal surface) be less than the average velocity in the gravity current behind the 
head. 

The second process is that in which fluid in front of the gravity current is overrun 
by the gravity current and then mixed within it (Allen 1971 ; Simpson 1972). This is a 
direct result of the no-slip condition imposed by the rigid surface. It was thought that 
an experiment in which velocity gradients a t  the boundary were small would be a 
useful test of Benjamin’s analysis for the inviscid gravity current head. Attempts were 
made to reduce boundary velocity gradients by running gravity currents of fresh 
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water into ambient saline solutions, i.e. along a free surface, but it became apparent 
that, a t  least for laboratory scales, any impurities at  the free surface resulted in the 
free surface acting as a no-slip surface. This effect was due, presumably, to significant 
surface-tension forces resulting from increased impurity concentration gradients along 
the surface ahead of the gravity current and the relatively small forces that are 
associated with gravity currents with small density differences. At larger scales or 
with large density differences the free surface might be expected to be a boundary 
with slip. 

An alternative technique for suppressing the overrunning of the light fluid by the 
denser fluid is to reduce the relative velocity between the floor and the gravity current 
head to zero (Simpson 1972). This is the technique described in 0 3 with the addition 
that the head of the gravity current is brought to rest by placing it in an opposing flow. 

When the overrunning of less dense fluid is suppressed, the complicated lobe and 
cleft structure disappears and regular billows can be seen forming on the leading-edge 
slope of about 40°, rolling back above the head, and finally breaking down into a more 
random velocity and concentration field. Figure 1 (plate 1)  shows shadowgraphs of 
gravity current heads brought to rest by means of an opposing flow. In  figure 1 (a )  the 
head is moving relative to the floor; mixing can be seen a t  the head and there are 
indications of a three-dimensional structure. The foremost point of the head (indicated 
by an arrow in figure 1 a )  is raised above the floor. I n  figures 1 ( b )  and ( c )  the floor 
beneath the denser f luid i s  $xed, i.e. the relative velocity between the floor under the 
gravity current head and the foremost point of the gravity current head is zero, 
thereby reducing velocity gradients at the floor inside the gravity current head. In  
the latter examples the foremost point of the gravity current head is on the floor, the 
flow is nearly two-dimensional and more distinct billows can be seen. The behaviour 
of these flows is different from that of the familiar ‘arrested saline wedge ’ described 
by Farmer (1951), Keulegan (1957) and Riddell (1970), in which a gentle, almost 
linear slope is seen, usually with no breaking waves. The difference appears to be 
associated with the existence of a boundary layer in the flow approaching the arrested 
saline wedge. The boundary layer, when contrasted with a uniform approach flow, 
will have smaller stagnation pressures near the ground and smaller velocity dis- 
continuities (strictly, local velocity gradients) across the fluidlfluid interface. Both 
effects might explain the characteristics of an arrested saline wedge, i.e. the gentle 
slope and the absence of significant mixing across the interface. 

In  this paper we examine the behaviour of gravity current heads like those shown 
in figures 1 ( b )  and (c), in which the overrunning process has been suppressed. This is 
done by use of an apparatus in which the head is brought to rest by an opposing flow 
of less dense fluid arranged to have a uniform velocity profile. Figures 2 (a) and ( b )  
show the difference between the production of these flows and of an ’arrested saline 
wedge’. 

In  essence, then, the paper considers, experimentally and analytically, the inviscid 
gravity current head of Benjamin complicated by the observed mixing of the two 
fluids a t  the head. A clearer understanding of this problem is a first step towards the 
solution of the problem of a gravity current advancing over a no-slip surface. 
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FIGURE 2. The production and effect of different incident velocity profiles. (a )  Uniform velocity 
profile. ( b )  Boundary layer and arrested saline wedge. 

2. Analysis 
Consider the flow in the experimental arrangement depicted in figure 2(a),  but 

where the velocity of the gravity current has not, as yet, been reduced to zero. U,, Q, 
pz, p l ,  g and h, are the relevant independent variables, where Q is the volume flow 
rate of dense fluid per unit width of the channel. Int,roduction of the Boussinesq 
approximation reduces the independent variables to U,, Q,  9‘ and h,, where 

9’ = S(P2 - Pl)/Pl.  

Interesting dependent variables are U,, the velocity of the front in the experiment, 
and h,, the depth of the dense fluid well behind the head, i.e. the depth of the following 
gravity current, 

I n  dimensionless form 

If the independent variables are now adjusted such that 

then we expect, and observe, a unique (though not necessarily single-valued) relation- 
ship between U;/g’h, and h4/h,. We present here an analysis that  determines 

ut/g’hl = F3(h4/h l )  (2.3) 
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FIGURE 3. Physical model of the gravity current head observed in figures 1 ( b )  and ( c ) .  

for a given &g’/U:; then, with guidance from the experimental results, the controlling 
physical process is isolated, resulting in a further equation which allows a complete 
solution. 

The analysis is restricted to  miscible fluids or a flow in which the effects of surface 
tension may be neglected. Also the analysis is restricted to flows a t  Reynolds numbers 
high enough for an inviscid analysis to  be adequate. The analysis is similar to Ben- 
jamin’s except that, another parameter, &, the volume flow per unit width into the 
gravity current head of dense fluid (or the flow per unit width of dense fluid removed 
from the head as a result of mixing), is included. The flow observed in figures 1 ( b )  
and (c) is represented by the model in figure 3, where the frame of reference is such 
that the head of the current is stationary. 

The flow is inviscid, incompressible and steady. The upper and lower surfaces are 
rigid. Section AB is far enough upstream for the influence of the gravity current not 
to  be felt. Section CDEF is far enough downstream that all the velocities are horizontal 
and that the mixed region is not decreasing in thickness owing to its stable density 
stratification. However this section is not so far downstream that (i) mixing across 
the interface of which D is a member is significant, (ii) wave drag on the interface of 
which D is a member is significant and (iii) the mixed region has grown significantly 
in the manner of a decaying turbulent wake. The pressure at sections AB and CDEF 
will be hydrostatic. 

The downstream flow has been divided, somewhat arbitrarily, into three regions. 
The bottom region, of height h,, is the flow into the gravity current head of the denser 
fluid, while the top region contains unmixed, less dense fluid. Between these is a third 
region, the collapsed wake from the billows, in which there is a velocity and a con- 
centration profile. Thus uniform flow has been assumed everywhere except in the 
mixed region behind the head. This assumption will be poor as (h,+h4)/h1 becomes 
small and its validity will be discussed in 0 5 .  

Application of mass conservation to the two species gives 

u1 hi = u2 h2 + (a  -/I) U, ha (2.4) 
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where 
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(2.5) 

0lU2 h3 = loh' U(h)  dh, 

pU2h3 = lOhaC(h) U(h)dh, 

and C(h)  is the concentration of the denser fluid as a function of the distance h, where 
h i s  measured from the top of the lowest region. As the flow is steady, the net horizontal 
force external to  and acting on the control volume ABOCDEFA equals the net flux 
of horizontal momentum crossing the boundaries of the control volume. Arbitrarily 
setting the pressure a t  the stagnation point 0 to zero and introducing the Boussinesq 
approximation leads to  

&UZ, h1+ ig'h; + +Ut h1 = Ug h2 + Q(SP-lU2 - U4) + &g'[h2 + ( 1  - 7) hJ2 
+&g'(2e-r2)h:, (2 .6)  

where 

yh, = Joh'C(h) dh, SUZ, h, = 1"" 0 U2(h) dh, 

eh: = Joh3 hC(h) dh. 

When Q = 0 this reduces to 

8 U ;  h1- Ua h2 = - ig'hl+ 39' hi. 

By combining (2.4)-(2.6), we may write 

or, subject to  specifying the wake profiles, easily obtain 

U?/g'hi = [F5(h4/hi)l~~,/u: = const 

by a simple iterative technique. A solution in the above form is not convenient in the 
limit h4/hl+ 0 because in this limit Ul/g'h4 becomes indeterminate. Therefore (2.8) was 
manipulated into the form 

where # = h4/h1, a result obtained by Benjamin (1968, equation 2.22). Solutions to 

+ - ( Y ' - ~ E )  Be$ = 0,  ( 2 . 9 ~ )  
2 2  
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hdh, 
FIGURE 4. Analytical results for U;/g’h, as a function of h,/h, and the non-diyensional volume flux 
q = Qg’/U:.  The shaded areas indicate non-physical solutions: 1111, q < 0; a, h, < 0; :!it,  region 
of net energy gain. The arrowheads indicate a continuation G f  the shaded areas. 

( 2 . 9 ~ )  were obtained (for typical wake parameters, see $4) and those for U:/g‘h, are 
shown in figure 4. The form of the curves in figure 4 is not sensitive to variations in the 
values of the wake parameters. 

I n  addition to  the two obvious regions of unphysical solutions (Uqlg’h, < 0 and 
h4/h, < 0 ) ,  a region for which h, is negative may be determined and one for which 
there is a net energy gain. This last region is determined by evaluating the fluxes of 
kinetic and potential energy crossing the boundaries of the control volume and the 
work done by the forces a t  the boundaries of the control volume. These regions have 
been included in figure 4, where the arrowheads indicate extensions of the shaded 
areas. 

We also note that if the flow sketched in figure 2 ( a )  is not to be controlled by the 
source configuration (our experiments indicated it was not) then the characteristic 
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velocity of long waves relative to the head must be zero or to  the right. If there is no 
mixed region such a constraint may be written as 

UE/g'h,+ U2,/g'h4 < 1. 

That is U,/(g'h,)* < A ,  where A is a function of h,/h,, with a maximum of 1 a t  
h4/h1 = 0. We have neglected the mixed layer immediately above the dense layer in 
this argument so the limit is better expressed as U,/(g'h,)B < A = O(1). 

A curve of the solutions for which U4/(g'h4)* = 1 is included in figure 4. Solutions 
below this line are those for which U,/(g'h,)* < 1. If we impose this constraint the 
region of physically possible solutions is seen to  be very limited. 

The analysis presented here is for a flow with a rigid upper surface but the experi- 
ments to be described in $0 3 and 4 were made with the experimentally simpler con- 
figuration of a free surface. Analysis of flow with a free surface introduces both a new 
variable, the total depth, and a new equation, Bernoulli's equation along the free 
surface. Benjamin (1968) has shown that inclusion of the new variable and new 
equation modifies the solution by a factor 1 +O((p,-p,)/p,). I n  the experiments 
described in $33 and 4 the maximum variation in the total depth of the flow was 
estimated to be less than 0.1 "A,, i.e. less than 0.01 cm, a variation that was not measure- 
able in the present apparatus. The authors agree with Benjamin (1968) that 'The 
corrections O((p,  -pl)/pl) . . . are unlikely to be significant in the interpretation of 
experiments using salt water . . . .' 

3. Apparatus and procedure 
The apparatus used for these measurements was designed and built when one of 

the authors (J.E.S.) was working a t  the University of Reading. The purpose was to  
study the behaviour of the head of a gravity current in conditions as near as possible 
to  a steady state. To achieve this, a steady current of water was pumped through the 
working section, the floor of the tank was moved in the form of an endless belt, and a 
saline flow was introduced a t  one end. 

I n  the experiments to be described here, which involved suppressing the usual 
ingestion of fluid beneath the nose which arises when the nose advances relative to the 
floor, the head was brought to rest on the fixed part of the floor close to the end of the 
moving belt. With a constant rate of input of saline solution in any one experiment, 
it was found possible to bring the head to rest for a certain value of U,, the speed of 
both the opposing flow and the conveyor belt. 

This apparatus is shown schematically in figure 5 .  The exposed length of the con- 
veyor belt is just under 1 m and the height h, of the water flow can be varied between 
6 and 12 cm. The available range for U, was between 1 and 6 cm s-l. 

The input of the channel flow and that of the saline underflow are monitored by 
rotameter flowmeters, and the floor speed has been calibrated in terms of the voItage 
supplied to  the driving motor. The channel flow passes through a flow straightener 
1.5cm long consisting of a mesh of hexagonal cells of width 0.3cm. The vertical 
variation of U, was less than in an experiment and any turbulence was of low 
intensity (estimated to be less than $ yo). For the observations described here other 
measurements required were the shape and external dimensions of the gravity current. 
These were made from shadowgraphs produced by a 300W slide projector, 3.5m 

2 
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FIGURE 5 .  Schematic diagram of apparatus. 

distant, which shone from the rear of the tank and formed an image on a tracing 
panel in front of the tank. 

The range of salt concentrations used was from 4 to 4 yo. By 1 yo we mean 1 yo by 
weight of added salt: the actual value of (pz -p l ) /p l  depends on the temperature, and 
for a 1 yo solution is about 0.0076 at 20 "C. 

During a run, which typically lasted up to about 20 min, the rate of saline input was 
usually kept constant. After the pump and floor speeds had been changed it was 
necessary to wait for up to  a minute before a new steady opposing flow rate was at- 
tained; this was shown by velocity measurements with a heated thermistor probe. 
When a steady state had been reached with the head within 1 cm from the end of the 
fixed floor, either a photograph was taken or the height of the top of the head and that 
of the following steady flow (h4) were marked on the tracing paper on the front of the 
tank. Figures 1 ( b )  and (c) show photographs of typical heads brought to rest in this 
way. 

The value of h, was measured to the nearest millimetre from the shadowgraph 
display, giving a maximum error of 10 yo in the small flows (0.5 cm) reducing to 2-5 yo 
in the deeper flows. The total depth h, could be measured to  within 1 yo. 

Two other depths were measured. The total head height was estimated as the height 
of the top of the billows before they began to break up and lose their clear outline. 
The depth of the mixed layer (defined as the mean depth over which fine structure 
was observed) was also measured, but to within the experimental accuracy, this was 
equal to the height of the top of the billows above the dense layer. That is, the depth 
from the floor to  the top of the billows and the depth from the floor to the top of the 
mixed layer were equal; this depth is referred to as the total head height h3 + h,. 

The volume flow was measured with the saline rotameter, and should be accurate 
to  within 10 %. However, i t  is not certain that all this volume flow reaches the heed, 
some being lost owing to  mixing behind the head near the weir, and measurements 
were made to determine what proportion actually reached the front. For a large volume 
flow a smaller fraction actually reached the front of the gravity current and was 
mixed there. Using the velocity of injected dye particles we obtained a corrected 



The dynamics of a gravity current head 231 

volume flux, per unit width of the tank. The experimental error in the non-dimensional 
volume flux q = Qg'/U: is estimated to be 

Further checks confirming the velocity measurements were obtained from the study 
of the streaklines produced when aluminium particles were injected into the flow and 
photographed over intervals of f or & s with illumination over a slit about 2 cm wide 
down the centre of the channel. 

Measurements were made of the velocity and salinity profiles in the mixed region 
behind the head, in order to  determine the forms of the profiles U(h) and C(h) to be 
used in the analysis. The velocity and salinity profiles were obtained a t  a distance of 
10h,-20h4 behind the foremost point of the head. Owing to the limited size of the 
apparatus it was not possible to  determine whether the profiles varied significantly 
downstream. 

Mean velocity measurements were made using a DISA hot-film probe with a DISA 
constant-temperature anemometer. Care was taken to reduce the error due to tem- 
perature sensitivity of the probe. Mean velocities were accurate to  within 5 %  for 
velocities greater than 1 cm s-l. Mean salinity measurements were made with a 
conventional conductivity meter based on the design of the Hydraulic Research 
Station a t  Wallingford, England. These measurements are accurate to within 5 yo also. 

30 yo. 

4. Experimental results 
The analysis as presented in 3 2 requires two empirical inputs and the first experi- 

ments were directed towards determining these inputs. The required inputs are the 
form of the velocity and salinity profiles in the mixed layer and the non-dimensional 
volume flux q = Qg' /  U: of the denser fluid carried forward into the head and mixed with 
the less dense fluid there. There is no requirement that these parameters be independent 
of the fractional depth h,/h,, although it was not expected that the form of the velocity 
and salinity profiles would be a strong function of the fractional depth. Measurements 
were obtained in the range 0.03 < h4/h, < 0.25. 

The velocity and salinity profiles in the mixed layer are well fitted by 

where m = 4 +_ 0-5 and n = 4 +_ 0.5. At small values of h,/h, the profiles were better 
fitted with m = 4 and n = 5, however the inaccuracy of the mean velocity and salinity 
measurements themselves, the inaccuracy of the determination of the extent of the 
mixed region and the difficulty in maintaining a steady flow over long periods all 
combined to hide any definite variation of the form of the profiles with the fractional 
depth h,/h,. Inclusion of an empirical variation of the wake profiles with h,/h, is 
thought to be an unnecessary complication when the analysis is based on a simple 
model. Therefore the values m = 4 and n = 4 have been used to determine the wake 
parameters in the analysis of 0 2. 

The other required empirical input, q, had a mean value, obtained from all our 
measurements, of 0.1 1 +_ 0-04 (i.e. f one standard deviation). However, q tended to 
increase with h,/h, from 0.075 f 0.025 a t  h,/h, E 0.05 to 0-15 +_ 0.05 a t  h4/h, E 0.20. 

The result of most interest in the present experiments is U,, the velocity of the 
oncoming flow required to hold the head of the gravity current steady, or alternatively 
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FIGURE 6 (a ) .  For legend see next page. 

the velocity of advance of the gravity current head into stationary surroundings. 
Two methods of non-dimensionalizing this velocity are available: the velocity may 
be scaled on the total depth of the ambient fluid to form the Froude number U,/(g’h,)t 
or the velocity may be scaled on the depth of the following gravity current to form 
the Froude number U,/(g’h,)*. These two Froude numbers are shown as functions of 
the fractional depth h,/h, in figures 6 (a )  and ( b )  respectively and compared there with 
results from the analysis of $ 2  for values of the non-dimensional mass flux q of 0, 
0.10 and 0.15. The curves labelled R, = 0.30, 0.35 and 0.40 may be ignored until 55 .  
The curves labelled q = 0 correspond to the results deduced by Benjamin (1968) for a 
gravity current with no mixing a t  the head. The mixing a t  the head of the gravity 
current increases the predicted Froude numbers considerably above those expected 
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FIGURE 6. Graphs of (a )  Fr = U,/(g’h,)h and ( b )  Fr = U,/(g’h4)6 against h4/h,. __ , analytical 
values for different non-dimensional volume fluxes q; - - -, analytical values for different values of 
R,, = g’h, / (AU)e (see $ 5 ) .  Values of ( p z - p I ) / p I :  A, 0.0037; 0, 0.0074; v, 0.015; 0, 0.030. Open 
symbols, 0.04 < q < 0.10; solid symbols, 0.10 < q < 0.21. 

in the absence of mixing. The experimental results are generally in agreement with the 
analysis presented in $2  for q between 0.10 and 0.15, consistent with our separate 
measures of q. 

It should be noted that the maximum value of U,(g’h,)* measured was 2.25, i.e. well 
in excess of the maximum value of 26 given by Benjamin (1968), but see $ 5 for further 
consideration of this point. 

I n  co-ordinates which have the less dense fluid stationary (i.e. for a gravity current 
head advancing into stationary surroundings) the velocity of the following gravity 
current is Ul + U,, or Ul( 1 + U,/U,). Therefore an inviscid, non-entraining, gravity 
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FIGURF, 7. Graph of U,/U, against h,/h,. -, values for different non-dimensional volume fluxes 
q;  ---, straight line of least-squares difference. 0, q < 0.10; 0 ,  q > 0.10. 

current of constant depth on a horizontal plane preceded by a gravity current head 
will have a Froude number 

and the flux a t  any cross-section will be Ulh4(l + U4,fC<). It therefore becomes 
apparent that the ratio of the ‘overtaking’ velocity U, ( =Q/h4)  to the opposing 
velocity U, is an important variable in determining the velocity of the gravity current 
head when only the flux in the following gravity current is specified. This ratio 
U4/C\ is plotted in figure 7 as a function of the fractional depth h4/h, and compared 
there with results from the analysis of $2.  The experimental data show general 
agreement with the analysis for q in the range 0.10-0.15. The least-squares linear fit 
to the data is in excellent agreement with the observed variation of q with fractional 
depth h,/h,. The ratio U4/Ul is only a weak function of h,/h,, increasing at  smaller 
values of h4/h,. The mean of the measured values was 0.22 _+ 0.04. The Froude number 
of the following gravity current has a maximum value in the present experiments of 

1 + -  = 2.25(1+0.25) = 2.81, mi( 3 
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FIGURE 8. Graph of U,/(g'h,)t against h,/h,. Values of 

( P z - P I ) / P I . :  A, 0.0037; 0 ,  0.0074; V, 0.015; ., 0.0030. 

approximately twice that predicted in the absence of mixing a t  the gravity current 
head (i.e. 2 t ) .  

The 'overtaking ' velocity U4 may also be non-dimensionalized with the 'overtaking' 
layer depth to form the variable U4/(g'h4)t. Arguments were presented in $ 2 to suggest 
that U4/(g'h,)4 < A ,  where A is of order unity when h4/hl-+0, and that it decreases 
as the fractional depth h4/hl is increased. U4/(g'h4)t is plotted in figure 8 as a function 
of h4/h, and indeed U4/(g'h4)t < O( 1 )  and increases as h4/h, decreases. Extrapolation 
of the data in figure 8 to U,/(g'h,)l equals O(1) or possibly 1 at h4/hl = 0 is not un- 
reasonable and this will be discussed further in $ 5 .  

The gravity current head shown in figures 1 ( b )  and ( c )  has the form of a wedge- 
shaped region of dense fluid with a maximum included angle of 40" f 5" a t  the apex 
(which is also the stagnation point in the frame of reference which holds the head 
stationary). The interface between the fluids was less steep away from the apex and 
finally became nearly horizontal. Small waves could be seen some way up the interface 
slope, travelling up the slope. These grew rapidly in amplitude, rolling up into discrete 
billows containing the two fluids and being convected away over the following gravity 
current. The billows initially grew in a coherent, two-dimensional manner but 
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FIGURE 9. Graph of head height h,/h, againat h,/h,. 

Symbols and curves as in figure 6. 

eventually were disrupted by the appearance of fine-scale turbulence possibly due to 
their own gravitational instability. The resulting disorganized fine-scale turbulence 
was also convected away over the following gravity current to form the mixed region 
considered in the analysis. It was observed that the maximum size to which the 
billows grew was equal to the size of the mixed region behind the head. That is, even 
though the coherent billow structure collapsed, the extent of the mixed region did not. 

The height h, of the mixed region behind the head non-dimensionalized with h4 is 
shown in figure 9 to increase sharply as h,/h, + 0, reaching 5.7 f 1.6 at h,/h, = 0.03. 
This is much larger than the value of approximately 1 often quoted for the head height 
of gravity currents advancing over no-slip surfaces (Keulegan 1957, 1958), although 
the comparison is not strictly valid as previous experiments (on gravity currents 
advancing over no-slip surfaces) have either not recognized h,/h, to be an important 
variable or have obtained data at  h,/h, 2: 0.2. The calculated values of h,/h, for values 
of q of 0.10 and 0-15 are also plotted in figure 9 and show good agreement with the 
experimental results. 

The appearance of the growth of individual billows at the gravity current head 
suggested that the growth may be a finite amplitude Kelvin-Helmholtz instability 
resulting from the velocity discontinuity across the fluid interface. 
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FIGURE 10. Velocity flow field near gravity current head as measured from tracer 

particles. (p2 -pl ) /pl  = 0.0037, h,/hl = 0.12. 

The growth of individual billows may be quantified by (AU)- lda/d t ,  where a is the 
width of the billow normal to the locus of the billow centre and AU is the velocity 
difference across the shear layer. I n  our experiments the relevant AU is difficult to 
determine, however we have taken AU = Urn - U,, where U,, is the velocity near the 
inLerface a t  the point where the billows start to form. This point is also difficult to 
determine and we have taken it to be theintersection between the wedge-shaped profile 
of the dense fluid and the line drawn through the billow centres, which was approxi- 
mately horizontal. Direct measurements of Urn and the velocity field outside the 
gravity current head were obtained with aluminium tracer particles for three different 
values of the fractional depth h,/h,. These suggested that Urn/Ul is constant a t  
1.55 k 0.10 for all h,/h, < 0.25. The data for h4/hl = 0.12 are shown in figure 10 and 
this pattern is similar to the others measured. It is also to be noted in figure 10 that the 
velocity difference across the mixed region is approximately the same as that across 
the interface a t  the supposed origin for billow growth. The billow convection velocity 
is included in figure 10 and was observed to be the mean of the velocities either side 
of the density interface: a not surprising result. 

At small times the non-dimensional billow growth rate (AU)- lda/d t  was estimated 
as 0.21 f 0.05, 0.26 +_ 0.05 and 0.24 0.05 for h,/hl = 0.22, 0.12 and 0-06. This is 
similar to the growth rate for a homogeneous shear layer, where (AU)-’da/dt = 0.19 
(Brown & Roshko 1974), implying a very small initial Richardson number across the 
shear layer (i.e. a very thin region of velocity and density variation). The density 
interface is continually renewed and will therefore be very sharp, while the region of 
velocity variation, though Reynolds number dependent, is such that we estimate the 
initial gradient Richardson number in our experiments to be less than 0.01. 

I n  any one experiment the billows grew to a fixed size before becoming indistinct 
amongst the turbulent fine structure. Measurements made from cine films of experi- 
ments with h,/h, = 0.22, 0.12 and 0.06 showed that the maximum billow size was 
attained a t  a non-dimensional time of g’t/AU N 3. The non-dimensional height of the 
mixed region after the collapse of the billow structure was found to be constant, 
independent of h,/h, and g’ ,  a t  gfh3/(AU)2 = 0.33 f 0.08 (48 observations). It would 
be more apt to non-dimensionalize the mixing layer in terms of the velocity difference 
across the mixed region itself but this, as shown above, is approximately equal to 
A U .  That is, the parameter g’h3/(AU’)2, where ACT‘ is the velocity difference across 
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the mixed layer, is also approximately constant at 0.33 and has the nature of a layer 
Richardson number. The ratio of the maximum billow amplitude to the billow 
wavelength was found to be 0.8 & 0.2 independent of g’ and hq/hl. The final layer 
Richardson number and t.he ratio of the maximum amplitude to the wavelength of 
the billows are consistent with the results of Thorpe (1973) for the Kelvin-Helmholtz 
instability between fluids of different density when the initial gradient Richardson 
number is small. 

5. Discussion and conclusions 
Experimental investigation of a gravity current head with the lobe and cleft 

structure (and associated overrunning of one fluid by the other) suppressed indicates 
that the leading interface of the gravity current head is subject to an instability 
similar, both qualitatively and quantitatively, to the Kelvin-Helmholtz instability 
of a shear layer separating two fluids of different density as described by Thorpe (1 973). 
At the head of a gravity current advancing over a no-slip surface the shifting pattern 
of lobes and clefts makes analysis of the dynamics of the head more complicated, 
however examination with slit lighting has shown the presence of similar billows 
involved in the mixing (Simpson 1969). An analysis (which is no more than a momen- 
tum balance) is presented that adequately describes the experimental observations. 
However, the analysis does not, by itself, give a unique solution. Recognizing that the 
instability and mixing a t  the head constitute the mechanism controlling the flow and 
have the nature of the Kelvin-Helmholtz instability allows an a priori description of 
the mixing. The experiments of Thorpe (1973) suggest that the parameter 

RL = g’h3/(AU)2 

(our notation) is constant and equal to 0.35 & 0.1. The results of Thorpe might lead 
us to expect that R, as defined above might be constant in the present experiments 
however it is probably fortuitous that the numerical constants in the two experiments 
are so close, the experimental configurations being considerably dissimilar. Never- 
theless, constraining our solution to ( 2 . 9 ~ )  to satisfy RL = g‘h3/(AU)2 = 0.35 (sug- 
gested by Thorpe’s results) leads to a unique solution. This solution is included in 
figure 6 and, as expected, good agreement is observed. The present results cover the 
range 0-03 6 h,/h, 6 0.25. It was not possible in these experiments to obtain flows 
with h4/h, > 0.25. This upper limit to the realizable fractional depths is similar to, 
but less than, that of 0.35 anticipated by Benjamin (1968). 

The experimental results are surprising in that the interesting limit h,/h, = 0 is 
very difficult to approach. A t  the smallest value of h,/h, observed (h,/h, = 0-03), the 
ratio h3/h, is still approximately constant a t  0.24. That is, the flow when h,/h, = 0.03 
is significantly different from the case of the gravity current in an infinitely deep 
fluid (h,/h, = 0). Similarly the Froude number U,/(g’h,)* is approximately 0.4 at 
h,/h, = 0.03 and, assuming that U, is independent of h, as h, becomes very large, must 
fall to zero a t  h,/h, = 0. 

Consider the case when h,/h, is vanishingly small in more detail. The analysis of 
5 2 (which assumed uniform flow everywhere other than in the mixed region) leads to 

92f3 -f( 1 - 2yP-lq) + 2 = 0 (5.1) 
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when h,/h, = 0. The assumption of uniform flow is poor in this limit. However, an 
alternative analysis? which assumes only that the velocities a t  great heights are 
independent of the existence of the current leads to precisely the same equation 

where the ratio h3/h, is determined to be qf/,B when h4/h1 = 0. The only physical solu- 
tions are those with f and q non-negative. As q is increased above zero f has two roots 
(corresponding to q2f3 >< l) ,  then a double root and finally no roots, except that for 
q = 0 the equation has the one trivial solution f = 2 obtained by Benjamin (1968). 
Benjamin noted that if there was mixing at the head then U:/g'h, = 2, where h, 
must be taken as the 'densimetric mean level of the disturbed interface'. Thus, in 
the present notation, 

U2,/g'(h4 + yh3) = 2. 

This result is a good approximation to the data in figure 6 ( b )  when the fractional 
depth is small. It is simply shown that at the double root 

qy3 = 1 and f = 3(1 -  2y,&lq)-l, 

The relation q2f3 = 1 is equivalent to U:/g'h, = 1 ; that is, in the frame of reference 
that holds the head stationary, the inflow at the back of the gravity current has a 
Froude number of 1 and the maximum volume flow rate Q is carried forward to the 
head for a gravity current of depth h,. 

There are no solutions to (5.2) when 

3q3 + 2 y p q  > 1,  (5.3) 

so for wake profiles with m = 4 and n = 4 (taken from experiments with h,/h, 2 0.03), 
y/,B = 2.25 and qmax = 0.089. It was noted in § 4 that, experimentally, q varied from 
0.15+0-05 a t  h,/h, N 0.20 to 0.075+0.025 at h,/h, rr 0.05. Extrapolation of the 
experimental results to h,/h, = 0 with q < 0.089 appears to be possible. Thus, with 
the constraints U4/(g'h4)* < 1 and q < 0.089, the maximum value of U,/(g'h,)& at 
h,/h, = 0 is 2.24, a t  q = 0.089. As the maximum value of U,/(g'h,)& observed is 
2.25 0.3, at h,/h, = 0.03, we expect that the relevant solution to (5.2) is that for 
q = qmax and is the double root. Alternatively, the experimentally determined para- 
meter R, = g'h3/(AU)2 = 0.33 * 0.08 could be extrapolated to h4/h, = 0 and a 
solution obtained, however a small error in our estimate of R, may lead to no solutions. 
Nevertheless R, is calculated to be 0.25 for the double root. If the wake profiles are 
characterized by m = 4 and n = 5 when h,/h, = 0 then R, = 0.32 at the double root 
and we have further support for the conjecture that the double root is the physically 
relevant one. 

The velocity field inside the gravity current head has not been studied in detail 
but it is reported here that the slope of the front of the head was 40 + 5". This was less 
than the expected slope of 60" (von Karmhn 1940). 

We have shown in this paper that the mixing between the two fluids at  the head of a 
gravity current is an important process in determining the dynamics of a gravity 
current head and that an analysis incorporating this mixing is possible. The next 

t We assume hydrostatic pressure on AB (figure 3) and FC, apply Bernoulli's equation along 
BO and GO and take A and F to great heights. 
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stage in the study of gravity current heads must include the consequences of a no-slip 
lower boundary: the elevation of the foremost point of the gravity current head and 
the ingestion of fluid beneath it. Numerous experiments on gravity currents advancing 
into still water, but with a fractional depth not very different from 0.2 (Keulegan 
1958; Yih 1965; Barr 1967), have shown that the Froude number U,/(g’h,)h is approxi- 
mately equal to 1 and also that the height ratio hJh, N- 1 .  Preliminary experiments 
have been made in which the range of fractional depths has been much extended and 
various opposing flows have been applied. These show large variations in the Froude 
number and in the head height similar to those seen in this investigation. 

In  conclusion we reiterate the comment in the introduction that, although this 
study was initially undertaken as a first step towards understanding gravity currents 
advancing over a no-slip surface, we believe that it has direct relevance to gravity 
currents running at free surfaces in the absence of any significant surface-tension 
forces. 

This apparatus was originally constructed a t  the University of Reading by Mr M. 
Cantwell and Mr R. Flatt, who worked out the details of the design. We are grateful 
to them for their interest in the project and their ingenuity in overcoming difficulties. 
It was later transferred to Cambridge and modified there. J. E. S. thanks especially Dr 
J. R. Milford for helpful discussions in the early stages and the Natural Environment 
Research Council for a grant to support the work. R. E. B. is supported by a grant 
from Shell, Thornton Research Centre. The authors express their thanks to Dr P. F. 
Linden for his encouragement. 
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(4 
FIGURE 1. Sliadowgraplis of gravity current heads brc,iight to rest by an opposing flow with 
uniform kelocity profile. (u)  \Vtiole floor moking at the same velocity as thc opposing flow. Tho 
arrow indicates tlio elevation of the foremost point of tho gra\ ity ciirrent. (pz - p l ) / p l  = 0.0074, 
I L J ? L ~  = 0.13. ( b )  Witli :I fixed floor beneath the dense fluid. ( p 2 - p , ) / p l  = 0.0037, h,/h, = 0.19. 
(c) With a fixod floor beneath tlic denso fluid. (p2  - p l ) / p l  = 0.015, h,/h,  = 0.04. 
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